Menu Close

A new Northwestern Medicine multi-site study says that scientists are bringing precision medicine to rheumatoid arthritis for the first time by using genetic profiling of joint tissue to see which drugs will work for which patients.

In the near future, patients won’t have to waste time and be disappointed with months of ineffective therapy, scientists said.

“Now we can start to predict which drugs a patient will respond to,” said co-senior author Harris Perlman, chief of rheumatology at Northwestern University Feinberg School of Medicine. “We can truly do precision medicine for rheumatoid arthritis. I believe this could be game changing.”

The paper was recently published as an uncorrected proof in Arthritis & Rheumatology and will be officially published in the journal in late May. Richard Pope and Deborah Winter also are lead Northwestern authors.

Treatment for rheumatoid arthritis now is trial and error. “We have so many different biologic drugs and there’s no rhyme or reason to give one drug versus the other,” Perlman said. “We waste $2.5 billion a year in ineffective therapy. And patients go through 12 weeks of therapy, don’t respond and get upset.”

Scientists in the multi-site study were the first in the U.S. to use ultrasound-guided therapy to take a tissue biopsy in the affected joint. In the past, blood samples were used to try to determine the effectiveness of the therapy and disease progression.

“It’s just like oncology, where you go to the tumor,” Perlman said. “Why go anywhere else? In rheumatoid arthritis, we’ve never gone to the target organ.” Improved ultrasound guided techniques make the new technique possible, Perlman said, noting joint biopsies began in Europe about six years ago.

The next goal is to predict which patients will have the best response – based on their genetic signature – to a specific drug.

In a new study, researchers are taking joint biopsy tissue from patients at the start of a new therapy and then six weeks later to see if they can find a predictor gene sequence that will clearly identify which patients respond to a particular therapy.

“The idea is to develop gene sequences to predict whether a patient will respond or not,” Perlman said. “Our goal is that this procedure will become the standard of care of for all patients with rheumatoid arthritis.”

The study was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Heart, Lung and Blood Institute, the National Institute of Aging and the National Cancer Institute, all of the National Institutes of Health and the Reumatology Research Foundation.